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Signatures of quantum integrability and nonintegrability in the spectral properties of finite
Hamiltonian matrices

Vyacheslav V. Stepanov and Gerhard Mu¨ller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 2 March 2000!

For a two-spin model which is~classically! integrable on a five-dimensional hypersurface in six-dimensional
parameter space and for which level degeneracies occur exclusively~with one known exception! on four-
dimensional manifolds embedded in the integrability hypersurface, we investigate the relations between sym-
metry, integrability, and the assignment of quantum numbers to eigenstates. We calculate quantum invariants
in the form of expectation values for selected operators and monitor their dependence on the Hamiltonian
parameters along loops within, without, and across the integrability hypersurface in parameter space. We find
clear-cut signatures of integrability and nonintegrability in the observed traces of quantum invariants evaluated
in finite-dimensional invariant Hilbert subspaces. The results support the notion that quantum integrability
depends on the existence of action operators as constituent elements of the Hamiltonian.

PACS number~s!: 05.45.2a, 75.10.Hk, 75.10.Jm
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I. INTRODUCTION

An autonomous classical Hamiltonian system with tw
degrees of freedom, specified by some analytic funct
H(p1 ,q1 ;p2 ,q2) of canonical coordinates, is either inte
grable or nonintegrable—tertium non datur. If a second in-
tegral of the motion can be found, i.e., an analytic funct
I (p1 ,q1 ;p2 ,q2) which is functionally independent ofH and
satisfiesdI/dt5$H,I %50, the system is proven integrable.
chaotic trajectories can be detected in the phase flow,
system is demonstrably nonintegrable. Although it may h
pen that neither evidence can be ascertained in practice
given H, one or the other status is guaranteed to apply.

A question of long-standing interest has been whethe
equally clear-cut classification of systems exists in quan
mechanics. Translating the criterion of classical integrabi
into quantum mechanics for systems with few degrees
freedom opens up loopholes of ambiguity that are not ea
closed@1,2#. Quantum mechanically, a second integral of t
motion, i.e., an operatorI with @H,I #50 can always be con
structed, for example, via time average of an arbitrary ope
tor A @3,4#. Performing the time average in the energy re
resentation eliminates all off-diagonal matrix elements ofA.
Which attributes of quantum invariants are most sensitive
the integrability status of the system?

Quantum chaos research has identified a catalog of
tributes that distinguish quantized nonintegrable from qu
tized integrable systems@5–7#. The most widely studied dis
tinctive properties pertain to level statistics. However, in
extreme quantum limit of a typical model system, where
density of energy levels is low, this distinction is blurry
best or altogether unrecognizable. Only in the energy ra
where the level density is high, which includes the semicl
sical regime, do the contrasting level spacing distributio
come into focus. Other indicators of quantum chaos are s
larly ambiguous.

One unequivocal discriminant between quantized in
grable and nonintegrable systems was recently identified
study of level crossing manifolds in the parameter space
PRE 621063-651X/2000/62~2!/2008~10!/$15.00
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two-spin model@8#. The system is specified by the quadra
Hamiltonian

H5 (
a5x,y,z

$2JaS1
aS2

a1 1
2 Aa@~S1

a!21~S2
a!2#% ~1!

for two quantum spinsS1 ,S2 of equal lengthAs(s11) (s
5 1

2 ,1,32 ,...). In theclassical limit\→0,s→`,\As(s11)
5s, the operatorsSi turn into 3-component vectors,Si
5s(sinqi coswi ,sinqi sinwi ,cosqi), and Eq. ~1! then de-
scribes the energy function of an autonomous Hamilton
system with two degrees of freedom and canonical coo
nates pi5s cosqi ,qi5wi ,i51,2. The classical integrability
condition was shown to have the form@9#

~Ax2Ay!~Ay2Az!~Az2Ax!1 (
abg5cycl~xyz!

Ja
2~Ab2Ag!50.

~2!

Quantum mechanically, the Hamiltonian~1! is expressible
as a real symmetric block-diagonal matrix, where each of
infinitely many finite-dimensional blocks is associated w
one spin-s realization of an irreducible representation of t
underlying~discrete! symmetry group~see the Appendix!.

The main conclusions of the level crossing study for t
system may be summarized as follows@8#: ~i! In the six-
dimensional~6D! parameter space of~1!, level degeneracies
occur on smooth 4D structures@10# ~ii ! For an invariant
block of H with K levels, this 4D structure consists ofK
21 sheets, each representing one twofold@k,k11# level
degeneracy in the sequenceE1<E2<¯<EK . ~iii ! All 4D
level crossing sheets are completely embedded in the
integrability hypersurface.~iv! Under mild assumptions, the
integrability condition ~2! can be determined analyticall
from the conditions of level degeneracy in low-dimension
invariant Hilbert subspaces ofH.

These results strongly suggest that the notion of integ
bility remains meaningful for quantum systems described
2008 ©2000 The American Physical Society
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PRE 62 2009SIGNATURES OF QUANTUM INTEGRABILITY AND . . .
finite Hamiltonian matrices, notwithstanding the fact th
there exist universal algorithms for the diagonalization
finite symmetric matrices.

For a deeper understanding of this subtle notion of qu
tum integrability, we note that classical integrability guara
tees the existence of a canonical transformat
(p1 ,q1 ;p2 ,q2)→(J1 ,u1 ;J2 ,u2) to action-angle coordi-
nates. It transforms the HamiltonianH(p1 ,q1 ;p2 ,q2) and
the second integral of the motionI (p1 ,q1 ;p2 ,q2) into ana-
lytic functions HC(J1 ,J2),I C(J1 ,J2). Each point (J1 ,J2)
on the action plane specifies a torus in phase space. In
nonintegrable case, the actionsJ1 ,J2 are only defined for
the surviving tori. Since the tori are no longer dense a
where in phase space, no smooth functionsHC ,I C on J1 ,J2
exist anymore.

In a companion paper@11# we have postulated that th
underlying cause for the embedment of (dI21)-dimensional
level crossing manifolds in adI-dimensional~classical! inte-
grability manifold of the parameter space~with dimensional-
ity d>dI! is linked to the existence of action operators
constituent elements of the Hamiltonian. In that study
have demonstrated for two distinct model systems the
plicit functional dependenceHQ(J1 ,J2),I Q(J1 ,J2) of the
Hamiltonian and the second integral of the motion on t
action operators, and compared it to the similar yet differ
functional dependenceHC(J1 ,J2),I C(J1 ,J2) of the corre-
sponding classical invariants on the classical action coo
nates.

The familiar controversies surrounding the notion
quantum action do not arise unless we insist on interpre
the action operator as a~stationary! canonical momentum
which calls for an angle operator. The main problem is h
to define the latter in a satisfactory way@12–14#. If the ac-
tion operator is defined solely on the basis of its spec
properties, there is no need for introducing angle operato

II. METHOD

A more indirect but no less compelling method for de
onstrating the existence of action operators as constit
elements of the quantum invariantsH,I in some regions of
parameter space, namely on the integrability hypersurf
and their nonexistence elsewhere is pursued here for the
spin model~1!. We investigate the functional dependence
the eigenvalues of quantum invariants on the Hamilton
parameters, in particular across lines demarcating chang
symmetry and/or integrability status.

Here and in the following, all references to integrabili
status rely on the well understood and rigorously establis
classical integrability condition~2!, but the focus is on the
study of quantum mechanical properties that are sensitiv
this condition and thus impart meaning to it as a quant
integrability condition.

On the integrability hypersurface~2!, the natural quantum
numbers of the eigenstates within any invariant Hilbert s
space ofH are the integer pairs (m1 ,m2) specifying the ei-
genvalues~in units of \! of the action operatorsJ1 ,J2 .
Henceforth we call themaction quantum numbers. Else-
where in parameter space, where level crossings betw
eigenstates of the same parameter space are prohibited
natural quantum number is a single integer, theenergy sort-
t
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ing quantum number n. What consequences do these co
flicting assignments of quantum numbers in the two regio
of parameter space have for the functional dependenc
quantum invariants on the Hamiltonian parameters?

Consider the case of aK-dimensional invariant subspac
of ~1! spanned by the basis given in the Appendix. TheK
eigenstatesuk&,k51, . . . ,K then form a star of orthonorma
vectors pointing in oblique directions with respect to the c
ordinate axes. A tiny change of the parametersJa ,Aa causes
the star of eigenvectors to rotate slightly. By monitoring t
inner product between eigenvectors before and after ev
infinitesimal parameter change, we can keep track of
eigenvectors along the entire loop in parameter space.

At the same time, we monitor the effect of the gradua
transforming eigenvectors on the eigenvalues of two qu
tum invariants. For this purpose we choose the energy
pectation valueEk5^kuHuk& and the expectation valueI k

5^kuAuk&, whereA is some function of theSi
a @15#. When

the Hamiltonian parametersJa ,Aa are varied along a path in
6D parameter space, the vectoruk& traces a path on the sur
face of aK-dimensional unit sphere, and the point (Ek ,I k)
leaves a trace in the plane of invariants.

What if two eigenvectors are accidentally degener
(Ek5Ek8), which happens when their energy eigenvalu
cross each other at some point on the path in param
space? Generically, the eigenvalues of the second inva
are different at the point of level degeneracy (I kÞI k8). We
can always choose the second invariant so that this is
case. At the crossing point the orientation of the two eig
vectors is not fixed. However, that ambiguity is removed
we impose the condition that the path of every point (Ek ,I k)
in the plane of invariants must be continuous.

We shall see that varyingJa ,Aa along a closed path in
parameter space does not guarantee that the trace of e
eigenstate in the (Ek ,I k) plane is also closed. It may happe
for example, that two eigenvectors transform into each ot
in the course of one parameter-space loop, thus leaving
open trace in the plane of invariants, which will be clos
only after a second traversal of the loop. The two kinds
quantum numbers assigned to eigenstates in different reg
of parameter space as discussed previously, suggest the
lowing scenario.

~i! If the closed path in parameter space lies entirely
the integrability hypersurface, then the traces of all eig
states in the plane of invariants will be closed. Along t
loop, level crossings occur frequently, but the labeling of
eigenstates by the action quantum numbersm1 ,m2 remains
valid on every stretch of it.

~ii ! If the path in parameter space lies entirely off t
integrability hypersurface, the traces of all eigenstates w
again be closed but for a different reason. Level crossings
prohibited in this region. All states are labeled by the ene
sorting quantum numbern. That label is valid along the en
tire loop.

~iii ! If the closed path in parameter space consists of a
A on and a legB off the integrability hypersurface, then th
conflicting assignment of quantum numbers has the con
quence that some of the traces in the plane of invaria
remain open. An eigenstateuk& may undergo one or severa
level crossings on legA of the path and thus end up at
different position in the energy-level sequence at the beg
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2010 PRE 62VYACHESLAV V. STEPANOV AND GERHARD MÜLLER
ning of legB when the energy-sorting quantum number kic
in. As the parameters are varied along legB back to their
starting values, the point (Ek ,I k) is prevented from finding
its way back to the original position in the plane of invarian
because level crossings are now prohibited.

Not surprisingly, physical reality turns out to be mo
complicated. However, the observations made by
method of analysis prove to be highly illuminating in rega
to the relations between symmetry, integrability, and the
signment of quantum numbers.

III. RESULTS

To facilitate comparison with results obtained previous
we use the same reduced 3D parameter space as in Re@8#.
It is spanned byJy ,Jz ,Ax2Ay[2A at Jx51,Ax1Ay50,Az
50 @16#. The integrability condition~2!, which becomes

A~11Jy
222Jz

222A2!50, ~3!

is satisfied on a 2D surface consisting of the planeA50 and
a hyperboloid with axis atA50,Jz50. Embedded in this
integrability surface are 1D level crossing manifolds in p
terns whose complexity increases with the number of lev
in the invariant~Hilbert! subspaces under consideration@8#.

Individual eigenstatesuk& will now be tracked along
closed paths in this reduced parameter space. Each pat
lected displays distinct characteristic features in the trace
the plane of invariants (Ek ,I k). Here we useI k5^ku(S1

z

1S2
z)2uk&. We consider invariant~Hilbert! subspaces o

symmetry classA1A with K56,10 levels corresponding t
spin quantum numberss54,5, respectively ~see the
Appendix!.

Figure 1 depicts the reduced parameter space proje
onto the integrability planeA50. The dotted-dashed line

FIG. 1. Reduced parameter space (Jy ,Jz ,A) projected onto the
(Jy ,Jz) plane. The two dashed lines mark the intersection, 2Jz

2

2Jy
251, of the integrability hyperboloid with the planeA50. In

the integrability planeA50, level degeneracies ofHA1A
5 occur

along the dotted-dashed lines and multiple degeneracies at the
metry pointsuJyu5uJzu51 marked by the four pentagons. The so
circles represent projections of paths with radiiAJy

21Jz
25

1
2 , &,

3
2 along which we track the quantum invariantsEk , I k .
is

s-

,

-
ls

se-
on

ed

represent the level crossing manifold ofHA1A
5 with K510

levels in the planeA50. None of the intersection points o
two dotted-dashed lines involves triple or quadruple deg
eracies. Each level crossing line can thus be labe
@k,k11# by the positions in the level sequenceE1<E2
<¯<EK of the two levels involved in the crossing@17#.

The integrability hyperboloid intersects the integrabili
plane along the two dashed lines. There exist 30HA1A

5 level
crossing lines on the hyperboloid. These lines intersect
planeA50 at seven points on each dashed line, namely
the intersection points with dotted-dashed lines and on
symmetry points atuJyu5uJzu51. The solid circles represen
projections of paths along which we track the quantum
variantsEk ,I k .

A different projection of the reduced parameter space
shown in Fig. 2. The larger circle represents a path along
intersection of the integrability hyperboloid with the plan
Jy50.4. The squares on that circle mark the locations wh
the 10 level crossing lines on the hyperboloid forHA1A

4 in-
tersect the planeJy50.4. The smaller~concentric! circle rep-
resents a path that is located in the nonintegrable regio
parameter space except for the two points where it inters
the integrability planeA50 ~dashed line!.

A. Hallmark of integrability

The first path considered is the circleJy
21Jz

25 1
4 in the

plane A50 as shown in Fig. 1. This path does not com
close to any of the symmetry points~pentagons!. In Fig. 3 we
have plotted the 10 levels ofHA1A

5 versus angular distancea
on the circular path. We observe 20 pairwise crossings
tween six levels at the angles where the path intersects
dotted–dashed lines in Fig. 1.

No instances of level repulsion can be discerned in t
plot, which is not to say that thea dependence of adjacen
levels is uncorrelated. Take the six levels near the cente

m-

FIG. 2. Reduced parameter space (Jy ,Jz ,A) projected onto the
(Jz ,A) plane. The solid circles represent paths withJz

21A2

50.3712, 0.58 atJy50.4 along which we track the quantum invar
antsEk ,I k . The larger circle is located on the integrability hype
boloid. The positions of level crossings ofHA1A

4 states along that
path are indicated by squares. The dashed line marks the integr
ity planeA50.
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PRE 62 2011SIGNATURES OF QUANTUM INTEGRABILITY AND . . .
the spectrum. They can be divided into two groups of th
levels undergoing similar oscillations along the path. T
synchronicity of these oscillations is, in fact, a conseque
of the ~postulated! smooth dependence of the functio
HQ(J1 ,J2) and I Q(J1 ,J2) on a for this path embedded in
the integrability plane@11#.

In Fig. 4 we show the traces in the (Ek ,I k) plane of the
two eigenstates whose levels undergo four@7,8# crossings
along the path~thick lines in Fig. 3!. The traces are continu
ous, closed, and smooth. The square and the arrow ind
the starting point and the direction of the trace. Every le
crossing is represented by two vertically displaced asteri
one on each trace.

It is important to note that the traces remain perfec
smooth at the points of level crossing. The level crossi
have no impact on the eigenvectors, or on the expecta
valuesI k . Every eigenvector loops around and returns to
original orientation in Hilbert space. Its path is largely una
fected by the presence of other eigenvectors which bec
instantaneously degenerate with it. It is as if vectors und
going level crossings belonged to different invariant su
spaces.

FIG. 3. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 as defined in Eq.~A1! and plotted vs the angula
distancea on the circular path with radiusAJy

21Jz
250.5 in the

planeA50 of the reduced parameter space (Jy ,Jz ,A).

FIG. 4. Closed traces in the (Ek ,I k) plane of twoHA1A
5 levels

along the circular path with radiusAJy
21Jz

25
1
2 in the planeA50

of the reduced parameter space (Jy ,Jz ,A). The traces start at the
open squares (a50°) in the directions indicated. The asteris
mark level crossing points.
e
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The behavior of energy levels as observed in Fig. 3 a
the properties of traces as seen in Fig. 4 reflect what
expect for a typical situation in an integrable system w
two degrees of freedom. The two invariantsEk ,I k are func-
tions of two quantized actionsJ1 ,J2 with a smooth depen-
dence on the Hamiltonian parameters. The discrete value
the actions define the natural quantum numbers of all lev
and each eigenstate maintains its identity along any pat
parameter space notwithstanding the presence of level cr
ings. All traces produced along closed paths are there
closed as well.

There are two sources of complication forcing on us
refinement of this description without undermining the po
tulated link between quantum integrability and action ope
tors. These two complications will be discussed next bef
we investigate the effects of nonintegrability.

B. Level repulsion near symmetry points

The second path considered is the circleJy
21Jz

25 9
4 in the

integrability planeA50 ~see Fig. 1!. What makes it different
from the previous path is that it passes close to the f
points uJyu5uJzu51, where additional degeneracies occ
caused by a higher symmetry.

The 10 levels ofHA1A
5 versusa are plotted in Fig. 5. As in

Fig. 3 for the previous path, we observe 20 level crossin
each one associated with a point where the circular path
tersects one of the dotted-dashed lines in Fig. 1. In addi
to these crossings we observe instances of level collision
a5np/2, n51,3,5,7, i.e., in the vicinity of the symmetr
points.

It is instructive to compare the effects of level crossin
and level collisions on the traces in the plane of invariants
Fig. 6 we show again the trace of the point (Ek ,I k) for two
states that are involved in four@7,8# levels crossings~thick
lines in Fig. 5!, now along the second path. These trac
exhibit features not seen in Fig. 4.

We again observe that none of the level crossings lea
any mark on the traces, implying that the wave functions
the two eigenstates are completely unperturbed by the ins
taneous level degeneracies~see asterisks!. On any stretch
between successive mutual crossings, both levels co
with one neighboring level, and each collision does hav
dramatic effect on the traces of the states involved in

FIG. 5. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 plotted vsa on the path with radiusAJy
21Jz

2

51.5 in the planeA50 of (Jy ,Jz ,A) space.
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2012 PRE 62VYACHESLAV V. STEPANOV AND GERHARD MÜLLER
collision. Level collisions produce precipitous changes in
second invariantI k near the closest encounter of the collidin
levels. The rapid variation of expectation values signal
strong perturbation of the wave functions in a level collisio
The presence of this characteristic signature of level co
sions is as conspicuous in the traces shown in Fig. 6 a
their absence in the traces shown in Fig. 4.

In what might be called a hard level collision, the tw
states exchange wave functions in a manner like two billi
balls exchange momenta in a head-on collision. This ma
it hard to distinguish a hard collision from a crossing in
plot such as Fig. 5 because of graphical resolution. A plo
one invariant versus the other~Fig. 6! is much more sensitive
to that distinction. Here a hard level collision produces
variation in I k that looks almost like a discontinuity.

The phenomena observed in Figs. 5 and 6 are not in c
tradiction with the assertion that the invariantsEk ,I k are
functions of two quantum actions. It tells us, however, th
the dependence of these functions on the Hamiltonian
rameters is singular at the symmetry points ofH. The phe-
nomenon of level repulsion in the immediate vicinity of sym
metry points is then caused by invariants pertaining to
higher symmetry and by the associated additional level
generacies.

The traces of all levels depicted in Fig. 5 are closed
were all traces of the levels shown in Fig. 3. The implicati
is that the number of crossings between any pair of lev
must be an even number. The fact is that neither the le
crossings nor the level collisions can cause any confusio
the labeling of the levels by action quantum numbers alon
path in the integrability planeA50 as long as it avoids the
points uJyu5uJzu51 of higher symmetry with symmetry in
duced level degeneracies. Each eigenstate maintains its
tity along such paths, or so it seems.

C. Open traces caused by a change in symmetry

The third path considered is the circleJy
21Jz

252 at A
50 ~see Fig. 1!. It is embedded in the integrability plane an
passes through the pointsuJyu5uJzu51. The impact of these
symmetry points on the energy levels is depicted in Fig
What were level collisions in Fig. 5 have now turned in
additional level crossings. At the symmetry points, the

FIG. 6. Closed traces in the (Ek ,I k) plane of twoHA1A
5 levels

along the path with radiusAJy
21Jz

251.5 in the planeA50 of
(Jy ,Jz ,A) space. The traces start at the squares (a50°) in the
directions indicated. The asterisks mark level crossing points.
e
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levels combine into a singlet, a doublet, a triplet, and a q
druplet. No instances of level repulsion are observable a
more.

The absence of level collisions along this path is co
firmed by a study of the traces in the (Ek ,I k) plane. In Fig. 8
we show the traces of the two states that again start in
seventh and eighth positions of the level sequence. Gone
the rapid near-vertical displacements which we have ide
fied in Fig. 6 and which were caused by level collisions. T
traces in Fig. 8 are as unaffected by the new symmetry
duced level crossings as they are oblivious of crossings e
where in the integrability plane.

However, a striking new feature makes its appearanc
Fig. 8. The traces do not close in themselves after one l
around the circular path in parameter space. The eighth l
becomes the seventh level after one loop, and then turns
the second level after two loops. Only after the third lo
does it end up in the original eighth position of the lev
sequence.

In Fig. 7 the three levels involved in that loop are draw
as thick lines. Inspection shows that there are two furt
groups of three states which transform into each other as
parameter values loop around the circle. That leaves
state~near the center of the spectrum! whose trace closes in
itself after one loop.

FIG. 7. Energy eigenvaluesEk , k, . . . ,10 in the invariant sub-
space ofHA1A

5 plotted versusa on the path with radiusAJy
21Jz

2

5& in the planeA50 of (Jy ,Jz ,A) space.

FIG. 8. Open traces in the (Ek ,I k) plane of threeHA1A
5 levels

along the path with radiusAJy
21Jz

25& in the planeA50 of
(Jy ,Jz ,A) space. The traces start at the squares (a50°) in the
directions indicated The asterisks mark level crossing points.
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Is this phenomenon of levels transforming into each ot
compatible with the notion that the invariants are functio
of the quantized actions with a smooth dependence on
Hamiltonian parameters? Yes if we allow the dependence
the parameters to be singular at points of higher symm
within the integrability manifold. The presence of such s
gularities was already suggested by the level collisions
served in Figs. 5 and 6. The results of Figs. 7 and 8 confi
the singular parameter dependence from a different van
point.

When we start with the second path in parameter sp
~Sec. III B! and increase the radius of the circle gradua
toward that of the third path, we observe a gradual harden
of the level collisions near the symmetry points. The ha
ening is characterized by increasingly sharp curvatures in
graphs ofEk versusa ~Fig. 5! and by increasingly rapid
vertical variations in the graphsI k versusEk ~Fig. 6!.

In the limiting case of this path, the sharply curved b
smooth bends in the graphEk versusa turn into cusps, and
the fast but smooth vertical variations in the graphsI k versus
Ek turn into discontinuities. An infinitely hard level collisio
is indistinguishable from a level crossing. In Figs. 7 and
smooth segments of graphs between singularities that be
to different colliding levels are rejoined to form entirel
smooth graphs ofcrossinglevels.

Hence, if we insist that all levels maintain their identi
along any closed path in the integrability planeA50, we
must interpret all level crossings that take place at the po
of higher symmetry,uJyu5uJzu51, as infinitely hard level
collisions. All the evidence accumulated thus far still su
ports the existence of the functionsHQ(J1 ,J2) and
I Q(J1 ,J2) with a smooth parameter dependence on the
tegrability manifold, provided we allow for singularities a
points of higher symmetry.

Before we discuss the strongly contrasting properties
quantum invariants along paths that are not fully embed
in the integrability manifold of~1!, we should report on ye
another feature that complicates the interpretation of the
tegrable cases.

D. Open traces caused by topology

The circle A21Jz
250.58 with center atJy50.4 is the

fourth path along which we study the behavior of quant
invariants. This path represents a circular section of the
tegrability hyperboloid~3! ~see Fig. 2!. Like the first path
considered, it does not pass near any point in param
space where symmetry induced level degeneracies occu

The angular dependence of the sixHA1A
4 levels, depicted

in Fig. 9, does indeed not show any level collisions just
was the case in Fig. 3 for the first path. All levels under
several crossings along this path, and none of the cross
has any noticeable effect on the quantum invariantsEk ,I k
plotted in Fig. 10.

Nevertheless, there is a major difference between the e
lution of eigenstates along these two paths. Each one of
six levels shown in Fig. 9 transforms into a different level
the course of one loop of the path around the integrab
hyperboloid. It takes three loops for every eigenstate to
turn to its original position in the level sequence. On t
plane of invariants this phenomenon is reflected in op
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traces that connect to form two rings of three segments e
as shown in Fig. 10. The two sets of levels are distinguis
by line thickness.

Unlike in the previous situation~Sec. III C!, here the
open-trace phenomenon cannot be attributed to a chang
symmetry along the path. What distinguishes the first pa
where open traces do not occur from the fourth path, wh
they do occur, is that only the former can be shrunk to
point without leaving the integrability manifold. Hence th
multiple connectedness of the integrability hyperbolo
forces us to allow for functionsHQ(J1 ,J2) and I Q(J1 ,J2)
whose dependence on the Hamiltonian parameters is
smooth but multiple valued.

With these concessions, the signature properties of qu
tum integrability postulated above remain fully intact. Th
quantum invariantsEk ,I k exhibit strongly contrasting fea
tures when observed along paths that are not embedde
the integrability manifold. Visualizing these differences do
not depend on a statistical analysis. They are unmistake
identifiable in systems with very few levels.

E. Level repulsion due to nonintegrability

For a direct comparison with the previous situation, w
now choose a circle with the same center as the fourth p

FIG. 9. Energy eigenvaluesEk , k51, . . . ,6 in theinvariant
subspace ofHA1A

4 plotted versusa on the path with radius
AA21Jz

25A0.58 atJy50.4 embedded in the integrability hyperbo
loid of (Jy ,Jz ,A) space.

FIG. 10. Open traces in the (Ek ,I k) plane of all sixHA1A
4 levels

along the path with radiusAA21Jz
25A0.58 atJy50.4 on the inte-

grability hyperboloid in (Jy ,Jz ,A) space. The traces start at th
squares (a50°) in the directions indicated. The asterisks ma
level crossing points.
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and a somewhat smaller radius,Jz
21A250.3712. This fifth

path lies off the integrability manifold except for two poin
where it intersects the integrability planeA50 ~see Fig. 2!.
However, no level degeneracies occur at these intersec
points.

The six HA1A
4 levels versusa along the fifth path are

plotted in Fig. 11. Even though the resulting pattern
vaguely similar to that observed in Fig. 9, the differences
clear cut. All level crossings have turned into level col
sions.

Most of the collisions are fairly soft. The two harde
collisions are barely resolved as such on the scale of Fig.
None of the levels transform into each other any more. T
levels are now naturally labeled by the energy sorting qu
tum number. Each open segment of the traces shown in
10 has turned into a closed trace. All level collisions, es
cially the hard ones, leave the characteristic marks on
traces in the form of a rapidly varying second invariantI k .

If we were to move the fifth path closer to the integrab
ity hyperboloid by increasing its radius~see Fig. 2!, we could
observe a gradual hardening of all level collisions. The le
configurations as shown in Fig. 11 would increasingly
semble those in Fig. 9. The traces as shown in Fig. 12, h

FIG. 11. Energy eigenvaluesEk , k51, . . . ,6 in theinvariant
subspace ofHA1A

4 plotted vsa on the path with radiusAA21Jz
2

5A0.3712 atJy50.4 off the integrability hyperboloid in (Jy ,Jz ,A)
space.

FIG. 12. Closed traces in the (Ek ,I k) plane of all sixHA1A
4

levels along the path with radiusAA21Jz
25A0.3712 atJy50.4 off

the integrability hyperboloid in (Jy ,Jz ,A) space. The traces start a
the the squares (a50°) in the directions indicated.
on
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ever, would remain very different from those pertaining
the integrable case~Fig. 10!.

Only in the limiting case where the fifth path merges w
the fourth path would the closed traces of the nonintegra
model break into segments connected by vertical lines.
ends of each segment would then rejoin ends of ot
segments to form the smooth rings of open traces show
Fig. 10.

Similar observations are made upon lifting the first pa
off the integrability planeA50 to a plane atAÞ0. All the
level crossings that exist in Fig. 3, for example, turn in
level collisions. The closed traces such as those show
Fig. 4 break into pieces whose ends rejoin via near vert
lines into a new set of closed traces.

Along the second path we had observed~in Fig. 5! level
crossings~due to integrability! and level collisions~due to
nearby points of higher symmetry!. Lifting this path off the
integrability plane again removes all level crossings and
sults in a set of closed traces. The characteristic mark
level collisions on the traces in the (Ek ,I k) plane are the
same no matter whether they are caused by a reduced
metry or by nonintegrability.

Lifting the third path off the integrability plane has th
same effects on the level crossings attributed to integrab
and the level crossings attributed to the higher symmetry
selected points in parameter space~Fig. 7!. All are removed
indiscriminately.

F. Open traces caused by nonintegrability

The conflicting assignments of quantum numbers
eigenstates for parameter values on and off the integrab
manifold is most compellingly documented when we pick
path in parameter space that is only partially embedded
the integrability manifold.

The sixth path considered in this study of quantum inva
ants is a modification of the first path~Sec. III A! with the
same projection in Fig. 1. Whereas the first path was emb
ded in the integrability planeA50, the sixth path has a vari
able height relative to that plane:A(a)50.3 cos2(a/2). It
touches down to the integrability plane at a single pointa
5180°), where a@5,6# level crossing takes place.

Along this path there exist no other level crossings. A
the other crossings that existed in Fig. 3 for the first path
now replaced by level collisions~see Fig. 13!.

The inevitable consequence of having a single level cro
ing along a closed path in parameter space is the existenc
a pair of open traces in the plane of invariants, namely
traces of the states that undergo the@5,6# crossing ata
5180°. These traces are shown in Fig. 14. The ends of
solid and dashed lines form a single loop, which is traced
the direction indicated.

What causes here an open trace in the plane of invari
is obviously akin to what had caused an open trace in
situation described in Sec. III C. In both cases two lev
cross once due to particular circumstances at one point o
path, and are thus prevented from crossing back to t
original position in the level sequence on the remain
stretch of the path. In Sec. III C the particular circumstan
was a higher symmetry, here it is integrability.
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IV. INTERPRETATION

The study of quantum invariants along closed pa
through parameter space indicates that a change in symm
and a change in integrability status produce related phen
ena. In some dynamical systems, the conservation laws
guarantee integrability are direct consequences~via Noet-
her’s theorem! of continuous symmetries. Switching from
integrability to nonintegrability is then accompanied by
reduction in symmetry.

In the two-spin model~1!, the presence of a~continuous
rotational! O(2) or higher symmetry in spin space does
deed imply the existence of a second integral of the mot
namely the component of the total spin along the symme
axis, and integrability is guaranteed. However, a second
tegral of the motion was shown to exist for certain parame
values even in the absence of a continuous rotational s
metry @9#. Does integrability in that case indicate the pre
ence of a hidden symmetry?

Classical integrability guarantees that the Hamiltonian~1!
can be expressed as a function of the two action variab
H5HC(J1 ,J2). The cyclical nature of the angle coordinat
thus implies thatHC is invariant with respect to continuou
rotationlike transformations in phase space. Since this is

FIG. 13. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 plotted vsa on the path with radiusAJy
21Jz

2

50.5 atA50.3 cos2(a/2) in (Jy ,Jz ,A) space.

FIG. 14. Open traces in the (Ek ,I k) plane of the twoHA1A
5

levels which undergoes one@5,6# crossings along the path wit
radiusAJy

21Jz
250.5 atA50.3 cos2(a/2) in (Jy ,Jz ,A) space. The

traces start at the squares in the direction indicated. The asteris
each trace marks the level crossing point ata5180°.
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related to a continuous symmetry in configuration space,
appropriate to call it ahiddensymmetry.

For a description of the impact of symmetries on the le
spectrum of the quantum two-spin model, it is useful to d
tinguish three kinds of symmetry: discrete symmetries, c
tinuous symmetries, and hidden symmetries.

Discretesymmetries have no bearing on the classical
tegrability property, but they do affect the shapes of pha
space trajectories. Quantum mechanically, they divide
Hilbert space ofH into invariant subspaces. In general, th
does not result in symmetry-induced level degeneracies,
it does lead to accidental degeneracies between levels
longing to different invariant subspaces. Such level crossi
exist independently of whether or notH is integrable.

Hiddensymmetries, which guarantee classical integrab
ity, cause additional accidental level degeneracies, nam
between states within one of the invariant subspaces per
ing to any existing discrete symmetry.

Continuoussymmetries, in essence, combine the effe
of the discrete and hidden symmetries, and allow accide
intersubspace degeneracies. In addition to these effects,
tinuous symmetries~sometimes in tandem with discrete sym
metries! produce level degeneracies of a permanent nat
the so-called symmetry-induced level degeneracies.

There exists a hierarchy of symmetries in the two-s
model~1!: ~S0! In the absence of any symmetry, there are
level degeneracies. All levels will collide when Hamiltonia
parameters are varied. This situation can be realized by
external magnetic field.~S1! The existence of discrete sym
metries alone produces finite-D invariant Hilbert subspaces

TABLE I. Symmetry-adapted basis vectors for integers. The
local spin quantum numbers satisfy the relations 0, l 1<s, 2 l 1

, l 2, l 1 . The subspace dimensionalityK is 1
2 (s11)(s12) for

A1S, 1
2 s(s21) for A1A, and 1

2 s(s11) for the other six classes

A1S u00&, (u l 1 ,l 1&1u2 l 1 ,2 l 1&)/A2,
(u l 1 ,2 l 1&1u2 l 1 ,l 1&)/A2,

(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 even

A1A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

B1S (u l 1 ,l 1&2u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1A (u l 1 ,2 l 1&2u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B2S (u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B2A (u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3S (u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

on
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Level crossings exist between states belonging to diffe
subspaces. Levels within any subspace collide.~S2! The ex-
istence of hidden symmetries in addition to discrete symm
tries produces level crossings between states in the sam
variant subspace.~S3! The continuous symmetries produc
permanent degeneracies in certain regions of param
space.

There exists a hierarchy of level collisions which corr
sponds to the hierarchy of symmetries.~S1!→~S0! Intersub-
space level crossings in the presence of discrete symme
turn into level collisions when discrete symmetries are
moved. ~S2!→~S1! Intrasubspace level crossings turn in
level collisions when the hidden symmetries are remov
i.e., when the integrability is destroyed.~S3!→~S2!
Symmetry-induced level degeneracies associated with a
tinuous symmetry are removed outside the range of that s
metry irrespective of the presence or absence of the hid
symmetry.

Some level crossings along paths through symme
points in parameter space turn into level collisions alo
nearby paths that miss the symmetry point. Other level cro
ings are insensitive to whether the path hits or misses
symmetry point. They are the product of the hidden symm
try.

All phenomena observed in the quantum invariantsEk ,I k
along closed paths on, off, and across the integrability m
fold, indicate that the effects of a change in integrabil
status are akin to the effects of a change in symmetry.
observations point to the existence of a hidden symmetry
accompanies quantum integrability.

In the classical limit, this hidden symmetry manifests
self in phase space when viewed from a particular coordin
system—the action-angle coordinates. The same hid
symmetry must also exist in the quantum system, but only
the integrability manifold. Even though nonintegrability
not to be taken literally in the quantum case, the presenc
absence of that hidden symmetry has consequences tha
equally clear-cut as in the classical limit.
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APPENDIX: DISCRETE SYMMETRIES

The ~discrete! symmetry group relevant for the gener
2-spin Hamiltonian~1! is D2^ S2 , whereD2 contains the
three twofold rotationsC2

a , a5x,y,z about the coordinate
cs
nt

-
in-

ter

-

ies
-
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axes, andS2 the permutations of the two spins. The eig
irreducible representations of D2^ S2 are named
A1S, A1A, B1S, B1A, B2S, B2A, B3S, B3A, whereS(A)
stand for ~anti-!symmetric under permutation an
A1,B1,B2,B3 for (C2

x ,C2
y ,C2

z)5(1,1,1),(1,21,21),
(21,1,21),(21,21,1), respectively@4,18#.

The basis vectors with transformation properties cor
sponding to the eight different irreducible representationR
are listed in Table I for integers and in Table II for half-
integers. The Hamiltonian matrix can then be expressed
the form

H5 %

R,s
HR

s ~A1!

with blocks of dimensionalitiesK51,3,6,10, . . . in 16 dif-
ferent realizations, two for each symmetry class~one with
integers and one with half-integers! @19#.

TABLE II. Symmetry-adapted basis vectors for half-integers.
The local spin quantum numbers satisfy the relations 0, l 1<s,
2 l 1, l 2, l 1 . The subspace dimensionalityK is 1

8 (4s221)
for symmetric and 1

8 (2s11)(2s13) for antisymmetric
representations.

A1S (u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

A1A (u l 1 ,2 l 1&2u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1S (u l 1 ,2 l 1&1u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

B2S (u l 1 ,l 1&1u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 odd

B2A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3S (u l 1 ,l 1&2u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2

l 11 l 2 odd

B3A (u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd
i-
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